# Using the TPS61042 white-light LED driver as a boost converter

**By Jeff Falin** (Email: j-falin1@ti.com)

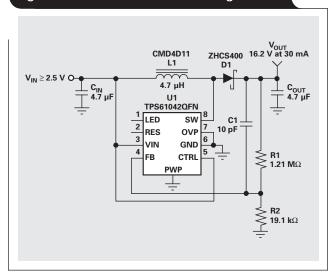
Applications, Portable Power

## Introduction

Although designed to be a white-light LED driver, the TPS61042 can be configured as a discontinuous, hysteretically controlled boost converter with a 500-mA peak switch current. For example, Figure 1 shows the TPS61042 configured to provide  $V_{OUT}$  = 16.2 V and  $I_{OUT}$  = 30 mA, from  $V_{IN}$  down to 2.5 V. The LED driver circuitry is either left unconnected (pins 1 and 2) or grounded (pin 7); and pin 5, CTRL, is used as enable.

# Operation

As a boost converter, the TPS61042 operates with an input voltage range of 1.8 to 6 V and can generate output voltages of up to 28 V. The device operates in a pulse-frequency modulation (PFM) scheme with constant peak-current control. This control scheme maintains high efficiency over the entire load-current range. With a switching frequency of up to 1 MHz, the device enables the use of very small external components.


The converter monitors the output voltage. When the feedback voltage falls below the reference voltage (typically 0.25 V), the internal switch turns on and the current ramps up. The switch turns off when the inductor current reaches the internally set peak current of 500 mA (typ). Refer to the following paragraph, entitled "Peak-current control," for more information. The second criterion that turns off the switch is the maximum on-time of 6 µs (typ). This limits the maximum on-time of the converter in extreme conditions. As the switch turns off, the external Schottky diode is forward-biased, delivering the current to the output. The switch remains off for a minimum of 400 ns (typ), or until the feedback voltage drops below the reference voltage. Using this peak-current control scheme, the converter operates in discontinuous conduction mode (DCM) where the switching frequency depends on the output current. This results in very high efficiency over the entire load-current range. Inherently stable, this regulation scheme allows a wide selection range for the inductor and output capacitor.

#### Peak-current control

The internal switch turns on until the inductor current reaches the typical dc current limit ( $I_{LIM}$ ) of 500 mA. Due to the 100-ns (typ) internal propagation delay, the actual current exceeds the dc current-limit threshold by a small amount. The typical peak-current limit can be calculated by

$$\begin{split} I_P(typ) &= I_{LIM} + \frac{V_{IN}}{L} \times 100 \text{ ns and} \\ I_P(typ) &= 500 \text{ mA} + \frac{V_{IN}}{L} \times 100 \text{ ns}. \end{split}$$

Figure 1. TPS61042 in a boost configuration



## **Soft start**

All inductive step-up converters exhibit high in-rush current during startup if no special precaution is taken. This can cause voltage drops at the input rail during startup and may result in unwanted or early system shutdown. The TPS61042 limits this in-rush current by increasing the current limit in two steps, starting from  $I_{LIM}/4$  for 256 cycles, then up to  $I_{LIM}/2$  for the next 256 cycles, and ending with the full current limit.

#### **Inductor selection, maximum load current**

Since the PFM peak-current control scheme is inherently stable, the inductor value does not affect regulator stability. The selection of the inductor, together with the nominal load current and the application's input and output voltage, determines the converter's switching frequency. Depending on the application, inductor values between 2.2 to 47  $\mu H$  are recommended. The maximum inductor value,  $L_{MAX}$ , is determined by the maximum on-time of the switch, 6  $\mu s$  (typ). The peak-current limit must be reached within this 6- $\mu s$  period for proper operation.  $L_{MAX}$  is calculated as

$$L_{MAX} = \frac{V_{IN}(min) \times 6 \, \mu s}{I_P}. \label{eq:LMAX}$$

| DEVICE   | CAPACITOR       | <b>VOLTAGE RATING (V)</b> | COMPONENT SUPPLIER       | COMMENTS                          |
|----------|-----------------|---------------------------|--------------------------|-----------------------------------|
|          | 4.7 μF/X5R/0805 | 805 6.3 Tay               | Tayo Yuden JMK212BY475MG | C <sub>IN</sub> /C <sub>OUT</sub> |
|          | 10 μF/X5R/0805  | 6.3                       | Tayo Yuden JMK212BJ106MG | C <sub>IN</sub> /C <sub>OUT</sub> |
| TPS61042 | 1.0 μF/X7R/1206 | 25                        | Tayo Yuden TMK316BJ105KL | C <sub>OUT</sub>                  |
|          | 1.0 μF/X5R/1206 | 35                        | Tayo Yuden GMK316BJ105KL | C <sub>OUT</sub>                  |
|          | 4.7 μF/X5R/1210 | 25                        | Tayo Yuden TMK325BJ475MG | C <sub>OUT</sub>                  |

The minimum inductor value,  $L_{MIN}$ , is a function of the output voltage, load current, and switching frequency and is calculated as

$$\label{eq:loss_loss} L_{MIN} = \; \frac{2 \times I_{LOAD} \times [V_{OUT} - V_{IN}(min) \, + \, V_{D}]}{I_{P}^{2} \times f_{SMAX}} \, ,$$

where  $\rm I_P$  is the peak current as previously described under "Peak-current control,"  $\rm I_{LOAD}$  is the maximum load current,  $\rm V_D$  is the maximum rectifier diode forward voltage (0.3 V typ), and  $\rm f_{SMAX}$  is the maximum switching frequency (1 MHz).

A smaller inductor value gives a higher converter switching frequency but lowers the efficiency.

The best way to calculate the maximum available load current under certain operating conditions is to estimate the expected converter efficiency at the maximum load current. The maximum load current can be estimated by

$$L_{LOAD} (max) = \eta \frac{V_{IN}(min) \times I_{P}}{2 \times V_{OUT}},$$

where  $\eta$  is the expected converter efficiency (typically 85%).

### **Output capacitor selection**

For the best output-voltage filtering, a low-ESR output capacitor is recommended. Ceramic capacitors have a low ESR value; but tantalum capacitors can also be used, depending on the application.

Assuming that the converter does not show double pulses or pulse bursts on the switch node (SW), the output voltage ripple can be calculated as

$$\Delta V_{OUT} = \frac{I_{OUT}}{C_{OUT}} \times \left[ \frac{1}{f_S \times I_{OUT}} \, - \frac{I_P \times L}{V_{OUT} + V_D - V_{IN}} \right] + I_P \times ESR,$$

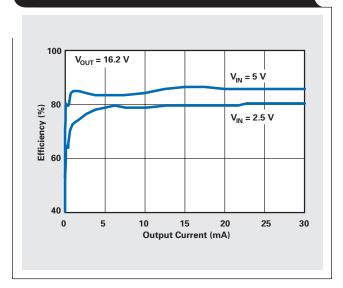
where  $\rm I_P$  is the peak current as previously described under "Peak-current control," L is the selected inductor value,  $\rm I_{OUT}$  is the nominal load current,  $\rm f_S$  ( $\rm I_{OUT}$ ) is the switching frequency at the nominal load current as previously calculated,  $\rm V_D$  is the rectifier diode forward voltage (0.3 V typ),  $\rm C_{OUT}$  is the selected output capacitor, and ESR is the output capacitor ESR value.

Refer to Table 1 for recommended output capacitors.

## Input capacitor selection

For good input-voltage filtering, low-ESR ceramic capacitors are recommended. A 4.7- $\mu$ F ceramic input capacitor is sufficient for most applications. Increasing this value provides better input-voltage filtering. Refer to Table 1 for recommended input capacitors.

# **Efficiency**


As shown in Figure 2, the TPS61042's efficiency ranges from about 70% to 86% in a boost configuration.

The inductor and diode in Figure 1 were selected to minimize the overall area. A larger inductor and/or diode can improve efficiency.

### **Related Web sites**

analog.ti.com www.ti.com/sc/device/TPS61042

Figure 2. TPS61042 boost-converter efficiency



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

#### **Products**

Amplifiers amplifier.ti.com

Data Converters dataconverter.ti.com

DSP dsp.ti.com

Interface interface.ti.com

Logic logic.ti.com

Power Mgmt power.ti.com

Microcontrollers microcontroller.ti.com

## **Applications**

Audio

Automotive
Broadband
Digital control
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
WM

www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

# TI Worldwide Technical Support

#### Internet

China

Korea

Internet

Hona Kona

Indonesia

Malaysia

TI Semiconductor Product Information Center Home Page support.ti.com

## TI Semiconductor KnowledgeBase Home Page

800-820-8682

080-551-2804

1-800-80-3973

886-2-2378-6808

support.ti.com/sc/pic/asia.htm

001-803-8861-1006

800-96-5941

support.ti.com/sc/knowledgebase

#### **Product Information Centers**

| Americas                                                                                                    | 4/070) 044 5500                                                                                                                                                                      | -                                                     | 4/070\ 007 0077                                                                                                  |  |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| Phone                                                                                                       | +1(972) 644-5580                                                                                                                                                                     | Fax                                                   | +1(972) 927-6377                                                                                                 |  |  |
| Internet/Email                                                                                              | ernet/Email support.ti.com/sc/pic/americas.htm                                                                                                                                       |                                                       |                                                                                                                  |  |  |
| Europe, Middle Ea                                                                                           | st, and Africa                                                                                                                                                                       |                                                       |                                                                                                                  |  |  |
| Phone                                                                                                       |                                                                                                                                                                                      |                                                       |                                                                                                                  |  |  |
| Belgium (English)<br>Finland (English)<br>France<br>Germany<br>Israel (English)<br>Italy<br>Fax<br>Internet | +32 (0) 27 45 54 32<br>+358 (0) 9 25173948<br>+33 (0) 1 30 70 11 64<br>+49 (0) 8161 80 33 11<br>1800 949 0107<br>800 79 11 37<br>+(49) (0) 8161 80 2045<br>support.ti.com/sc/pic/eur | Russia<br>Spain<br>Sweden (English)<br>United Kingdom | n) +31 (0) 546 87 95 45<br>+7 (0) 95 7850415<br>+34 902 35 40 28<br>+46 (0) 8587 555 22<br>+44 (0) 1604 66 33 95 |  |  |
| <b>Japan</b><br>Fax                                                                                         |                                                                                                                                                                                      |                                                       |                                                                                                                  |  |  |
| International<br>Internet/Email                                                                             | +81-3-3344-5317                                                                                                                                                                      | Domestic                                              | 0120-81-0036                                                                                                     |  |  |
| International<br>Domestic                                                                                   | support.ti.com/sc/pic/jap<br>www.tij.co.jp/pic                                                                                                                                       | an.htm                                                |                                                                                                                  |  |  |
| <b>Asia</b><br>Phone                                                                                        |                                                                                                                                                                                      |                                                       |                                                                                                                  |  |  |
| International Domestic Australia                                                                            | +886-2-23786800<br>Toll-Free Number<br>1-800-999-084                                                                                                                                 | New Zealand                                           | Toll-Free Number<br>0800-446-934                                                                                 |  |  |

**Philippines** 

Singapore

Taiwan

Thailand

Email

#### C011905

1-800-765-7404

001-800-886-0010

800-886-1028

0800-006800

tiasia@ti.com

ti-china@ti.com

Safe Harbor Statement: This publication may contain forwardlooking statements that involve a number of risks and uncertainties. These "forward-looking statements" are intended to qualify for the safe harbor from liability established by the Private Securities Litigation Reform Act of 1995. These forwardlooking statements generally can be identified by phrases such as TI or its management "believes," "expects," "anticipates," "foresees," "forecasts," "estimates" or other words or phrases of similar import. Similarly, such statements herein that describe the company's products, business strategy, outlook, objectives, plans, intentions or goals also are forward-looking statements. All such forward-looking statements are subject to certain risks and uncertainties that could cause actual results to differ materially from those in forward-looking statements. Please refer to TI's most recent Form 10-K for more information on the risks and uncertainties that could materially affect future results of operations. We disclaim any intention or obligation to update any forward-looking statements as a result of developments occurring after the date of this publication.

**Trademarks:** All trademarks are the property of their respective owners.

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

© 2005 Texas Instruments Incorporated